

Synthesis of N,C-dilithio-2-allylpyrrole and its solvent-controlled reactions with electrophiles

Bernd Wrackmeyer *, Iris Ordung, Bernd Schwarze

Laboratorium für Anorganische Chemie, Universität Bayreuth, D-95440 Bayreuth. Germany
Received 17 May 1996

Abstract

The N,C-dilithiated product 1 of 2-allylpyrrole was prepared and studied by ⁷Li NMR in THF/HMPTA. Compound 1 reacts selectively in THF with electrophiles (H₂O, MeI, Me₃SiCl) to give the Z-isomers 2a-4a. In diethylether, the analogous reactions lead selectively to the E-isomers 2b-4b.

Keywords: Pyrrole; 2-Substituted; N,C-dilithiation; ⁷Li NMR

1. Introduction

N.C-dilithiated compounds are attractive starting materials in organic and organometallic synthesis, as has been shown in the case of allylamines [1-4] or orthotoluidine derivatives [2,5]. Similarly, the dilithiated monobenzylamine o-LiC₆H₄CH₂N(Li)CH₂CH₂NMe₂ has been studied in detail [6,7]. N,C-dilithiated pyrroles have not been described so far. Known C,C-dilithiated compounds containing a pyrrole ring have been described from N-substituted pyrroles such as 1-phenylpyrrole [8] and 1-ethynylpyrrole [9]. Although the N-H function and the C=C double bond in 2-allylpyrrole are further apart than in allylamines, 2-allylpyrrole is certainly a promising candidate for N,C-dilithiation. Here we report on the synthesis of N,C-dilithio-2-allylpyrrole and some of its solvent-controlled selective transformations.

2. Results and discussion

2-Allylpyrrole reacts with two equivalents of "BuLi in hexane/ether to give the N.C-dilithio derivative 1 in high yield (Eq. (1)). The reaction proceeds stepwise, as expected, the N-H function being more reactive than the allyl group. Compound 1 is insoluble in hexane or

ether but soluble in THF. If 4.5 equivalents of HMPTA are added to a THF solution of 1, a broad 7Li NMR signal is observed at room temperature, which changes below $-80\,^{\circ}C$ to a quintet $[^2J(^{31}P,^7Li)=6.9\,\text{Hz}]$ and several broad 7Li signals (see Fig. 1). The appearance of the quintet at low temperatures indicates that a lithium cation has been removed from 1 and is now coordinated by four HMPTA molecules. The surroundings of the 7Li nucleus in this cation must be highly symmetrical, otherwise the scalar $^{31}P-O-^7Li$ coupling would not be resolved because of efficient quadrupolar relaxation of the 7Li nucleus. It is suggested that the broad 7Li resonance signals belong to various associated species of the anion shown in Eq. (2).

Corresponding author.

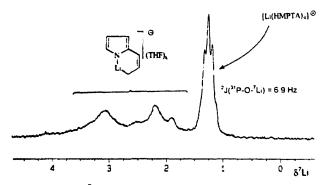


Fig. 1. 97.2 MHz 7 Li NMR spectrum of 1 in THF at -80° C in the presence of 4.3 equiv. (Me₂N)₃PO (HMPTA).

The simplified structure of the anion in Eq. (2) indicates that reactions of electrophiles with 1 in donor solvents such as THF may afford selectively the products with cis-configuration at the C=C bond. In contrast, in nonpolar or weaker donor solvents, these reactions might lead to mixtures of products with cis- and trans-configuration, or only to the trans-products. The results of the reactions of 1 with H₂O, MeI and Me₃SiCl in THF or in diethylether are summarized in Scheme 1. In THF all products possess the cis-configuration at the C=C double bond, whereas in ether the trans-products are formed selectively. The respective stereochemistry is readily apparent from the ¹H and ¹³C NMR spectra (see Table 1), in particular from the vicinal coupling constants ³J(¹H, ¹H) across the C=C bond [10]. The compounds 2 [11] and 3 [12] were previously obtained as 1:1 mixtures of E/Z-isomers by other methods.

The cis-selectivity observed for reactions of 1 with electrophiles in THF is promising for the use of 1 as a versatile synthon in heterocyclic synthesis. The ease of N,C-dilithiation of 2-allylpyrrole suggests that N,C,C-trilithiation of 2,5-diallylpyrrole will also be feasible.

3. Experimental

All preparative work and handling of samples, except the organic products 2a/b and 3a/b, was carried out under an atmosphere of dry N_2 , using oven-dried g'assware and dry solvents. Starting materials were commercial products or were prepared according to literature

		1	2a (Z)	2b (E)	3a (Z)	3b (E)	4a (Z)	4b (E)
N-R			H	Н	CH,	CH,	SiMe	SiMe,
3'-R'			Н	Н	H	H ,	SiMe	SiMe,
5 ⁷ Li		0.9 a		••	**	••	Sivie	SHAIG ?
87Li 829Si 613C [J(29Si,13C)]	N-Si	==	-	-	with the second	Altonia	11.2	11.1
	3'-Si	THE STATE OF THE S		tomorpp.	D _e segge	tornore.	1.9	1.6
	C-2	132.8	129.9	130.7	129.6	130.5	134.4	137.7
	C-3	98.7	108.6	106.2	108.2	106.1	109.6	107.6
	C-4	106.4	109.2	109.0	109.0	108.7	111.3	110.4
	C-5	123.2	117.2	117.7	117.4	117.8	122.7	123.2
	C-1'	76.3	120.1	121.5	118.2	119.2		
	C-2'	146.8	121.8	121.5	129.8		118.3	120.1
	C-3'	45.3	14.5	18.1		127.3	125.9	125.9
	N-R	*****	4.40.3	10.1	22.3	25.6	19.6 [46.8]	23.9 [47.5]
	3'-R'		winns	Williams.		-	0.2 [58.0]	0.7 [58.1]
	3°K		4400	-	13.7	13.5	- 2.0 [51.0]	-1.9[51.9]

At room temperature.

procedures (2-allylpyrrole [13]). NMR spectra were recorded using Jeol EX270 and Bruker ARX 250 spectrometers equipped with multinuclear units. Chemical shifts are given with respect to Me₄Si [δ^1 H(CHCl₃/CDCl₃) = 7.24, (THF) = 1.85; δ^{13} C(CDCl₃) = 77, (THF) = 26.5; LiCl (1 M in D₂O) (δ^7 Li with $\Xi^{(7}$ Li) = 38.86377 MHz)].

3.1. N,C-dilithio-2-allylpyrrole 1

A solution of "BuLi (187 mmol) in 120 ml of hexane and 100 ml of diethylether was added dropwise to a stirred solution of 10 g (93.4 mmol) of 2-allylpyrrole in 200 ml of ether at -78 °C. The mixture was stirred for 12h and warmed to room temperature. After that the bright yellow reaction mixture was filtered, the yellow precipitate was washed with pentane, and 9.4 g (85%) of 1 were obtained as a yellow powder. ¹H NMR (THF; 250 MHz) δ^1 H = 6.68 m, C⁵-H; 6.17 m, C⁴-H; 5.84 m, C³-H; 4.54 d [9.5 Hz, ³J] C¹-H; 6.32 m, C²-H; 2.55 d [11.0 Hz, ³J] (2H) C³.

3.2. Adduct of 1 with HMPTA

HMPTA (1.35 g; 7.5 mmol) was added to a solution of 0.2 g (1.7 mmol) 1 in 5 ml of THF at -78 °C. The colour changed from orange to dark red. The solution of the adduct must be stored at low temperatures (-78 °C), otherwise slow decomposition takes place.

3.3. Reactions of I with electrophiles

3.3.1. In THF

8.4 mmol of $\rm H_2O$, or $\rm Me_3SiCl$, or 4.2 mmol of MeI (followed by 4.2 mmol of $\rm H_2O$) respectively were added in one portion to a stirred solution of 0.5 g (4.2 mmol) of 1 in 20 ml of THF at $-78\,^{\circ}$ C. The orange solution became colourless. After warming to room temperature the solvent was removed and the residue extracted with hexane.

2a. Removal of the hexane and sublimation gave 0.33 g (73%) of **2a** as colourless platelets (m.p. 57 °C). ¹H NMR (CDCl₃; 250 MHz) δ^1 H = 8.09 [br], NH; 6.81 m, C⁵-H; 6.43 m, C³-H/C⁴-H; 6.28 d [11.6 Hz, ³J] C¹-H; 5.72 m, C²-H; 2.06 d [7.3 Hz, ³J] C³-H.

3a. Removal of the hexane and distillation gave 0.40 g (78%) of 3a as a colourless liquid (b.p. 43°C/1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ^1 H = 8.00 [br], NH; 6.91 m, C⁵-H; 6.65 m, C³-H; 6.61 t, C⁴-H; 6.38 d [11.6 Hz, ³J] C¹-H; 5.78 m, C²-H; 2.71 m, C³-H; 1.45 t, CH₃.

4a. Removal of the hexane and distillation gave 0.70 g (73%) of **4a** as a colourless liquid (b.p. 92 °C/0.1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ^1 H = 6.97 m, C⁵-H; 6.63 m, C³-H; 6.51 m, C⁴-H; 6.60 d [11.2 Hz, ³J] C¹-H; 5.87 m, C²-H; 2.15 d, C³-H; 0.70 s, N-SiCH₃; 0.33 s, 3'-SiCH₃.

3.3.2. In diethylether

8.4 mmol of H₂O or Me₃SiCl were added to a stirred suspension of 0.5 g (4.2 mmol) of 1 in 20 ml of ether at 0 °C. In the case of the reaction with 4.2 mmol MeI the mixture was stirred at room temperature for 1 h, and then 4.2 mmol of H₂O were added. After the colour of the dispersion changed to white, the mixture was filtered.

2b. Removal of the solvent from the filtrate and sublimation gave 0.29 g (65%) of **2b** as a colourless powder (m.p. 35 °C). ¹H NMR (CDCl₃; 250 MHz) δ ¹H = 8.01 [br], NH; 6.82 m, C⁵-H; 6.51 t, C⁴-H; 6.48 m, C³-H; 6.47 d [15.9 Hz, ³J] C¹-H; 5.03 m, C²-H; 2.16 d, C³-H.

3b. Removal of the solvent from the filtrate and distillation gave 0.4 g (65%) of **3b** as a colourless liquid (b.p. 43 °C/1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ ¹H = 8.04 [br], NH; 6.84 m, C⁵-H; 6.53 m, C³-H; 6.50 m, C⁴-H; 6.48 d [16.2 Hz, ³J] C'-H; 6.07 m, C^{2'}-H; 2.52 m, C^{3'}-H; 1.43 t, CH₃.

4b. Removal of the solvent from the nirate and distillation gave 0.57 g (60%) of **4b** as a cotourless liquid (b.p. 90 °C/0.1 Torr). ¹H NMR (CDCl₃; 250 MHz) δ^1 H = 6.81 m, C⁵-H; 6.49 m, C³-H; 6.33 t, C⁴-H; 6.37 d [15.5 Hz, ³J] C¹-H; 6.16 m, C²-H; 1.75 d, C³-H; 0.59 s, N-SiCH₃; 0.17 s, 3'-SiCH₃.

Acknowledgements

Support of this work by the Fonds der Chemischen Industrie and Volkswagen-Stiftung is gratefully acknowledged.

References

- [1] D. Hänssgen and E. Odenhausen, Chem. Ber., 112 (1979) 2389.
- [2] S.A. Burns, R.J.P. Corriu, V. Huynh and J.J.E. Moreau, J. Organomet. Chem., 333 (1987) 281.
- [3] J. Schulze and G. Schmid, J. Organomet. Chem., 193 (1980) 83.
- [4] J. Schulze, R. Boese and G. Schmidt, Chem. Ber., 114 (1981) 1207
- [5] B. Wrackmeyer and H. Zhou, J. Organomet. Chem., 375 (1989)1.
- [6] D. Barr, R. Snaith, D.S. Wright, R.E. Mulvey, K. Jeffrey and D. Reed, J. Organomet. Chem., 325 (1987) C1.
- [7] C. Barr, W. Clegg, S.M. Hodgson, R.E. Mulvey, D. Reed, R. Snaith and D.S. Wright, J. Chem. Soc., Chem. Commun., (1988) 367.
- [8] G.W.H. Cheeseman and S.G. Greenberg, J. Organomet. Chem., 166 (1979) 139.
- [9] A.G. Mal'kina, R. den Besten, A.C.H.T.M. van der Kerk, L. Brandsma and B.A. Trofimov, J. Organomet. Chem., 493 (1995) 271
- [10] H. Günther, NMR-Spektroskopie, Thieme, Stuttgart, 1992, pp. 108-115
- [11] W. Herz and C.F. Courtney, J. Am. Chem. Soc., 76 (1954) 576.
- [12] M. Tashiro, Y. Kiryu and O. Tsuge, Bull. Chem. Soc. Jpn., 48 (1975) 616.
- [13] E.P. Papadopoulos and C.A. Van der Werf, *Heterocycles*, 19 (1982) 343.